If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14x-249=0
a = 2; b = -14; c = -249;
Δ = b2-4ac
Δ = -142-4·2·(-249)
Δ = 2188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2188}=\sqrt{4*547}=\sqrt{4}*\sqrt{547}=2\sqrt{547}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{547}}{2*2}=\frac{14-2\sqrt{547}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{547}}{2*2}=\frac{14+2\sqrt{547}}{4} $
| 0.93x-3.1+0.02x=12.1 | | 6000-25x=4000 | | 3x-26=2x-29 | | -x÷3=3 | | 0.8x+1.1=0.5x-1 | | 2/3x+8=15-1x | | -33+5a=7(1-5a) | | 7x=2.8 | | 1/5r=5/9 | | (83x-2x)=(98-3x) | | -5x-6(-3x+15)+5=9 | | (2x+29)+x+(3x-26)=180 | | 180=(7x-92)+(6x+12) | | a+a/6=8 | | 6x+15=12x-9 | | 3x+32=86 | | X+4x+(5x-13)=180 | | 7=(u+3) | | 3j+2.75=15.50 | | 6x+15=12x-6 | | X-1+3(2x+3)=29 | | 5*x^2+1.5*x-6.5=0 | | (6x-13)+(3x)+x=180 | | 3+x/12=4 | | 8x3+6x2-128=0 | | 8x3+6x^-128=0 | | 5n+-3=52 | | (x+80)+(x-17)+x=180 | | -3+4(x+1)=11 | | 4x^2-3x-68=0 | | v/8+-4=-2 | | -2=4+v/8 |